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SFR Fuels Experience in the US
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SFR Fuels Experience in the US

! Metallic Fuels

– EBR-I, Fermi-1, EBR-II, FFTF

– U-Fs, U-Mo, U-Zr, U-Pu-Fs  U-Pu-Zr, others

! Mixed Oxide Fuels (MOX)

– EBR-II, FFTF

– (U,Pu0.2-0.3)O2

! Mixed Carbide Fuels (MC)

– EBR-II, FFTF

– (U,Pu)C w/15% (U,Pu)2C3
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Metallic Fuel Design (EBR-II)

Features of a Metallic Fuel Pin (from Pahl, et al, 1990)
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Metallic Fuel Design (FFTF)

FFTF Series III.b Metallic Driver Fuel Design (from Pitner and Baker, 1993)

(75% Smear Density)
-3 slugs

Gas Plenum
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Important Metallic Fuel Performance Phenomena

! Irradiation growth

! Fuel swelling and fuel-cladding

mechanical interaction (FCMI)

! Gas release

! Fuel constituent redistribution

! Fuel-cladding chemical

interaction (FCCI)
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Metallic Fuel Behavior—Axial Growth

U-10Zr U-8Pu-10Zr U-19Pu-10Zr

Axial Fuel Growth, from Pahl et al, 1990
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Metallic Fuel Behavior—Swelling &

Restructuring

X423A at 0.9% BU

X420B at 17% BU

X419 at 3% BU

As fabricated U-20Pu-10Zr

• Redistribution of U and Zr occurs early

• Inhomogeneity doesn’t affect fuel life

Zr-rich phases
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Metallic Fuel Behavior—Swelling & Gas Release

! Swelling

– Low smear density fuels

– Rapid swelling to 33 vol%

at ~2 at.% burnup

! Gas Release

– Inter-linkage of porosity at

33 vol% swelling results in

large gas release fraction

– Decreases driving force for

continued swelling

U-19Pu-10Zr (!-phase)

at 2 at.% burnup
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Metallic Fuel Behavior—Fuel Constituent

Redistribution

U-Pu-Zr

Lower

Melting

Phase

U-Pu-Am-Np-Zr
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U-19Pu-10Zr with D9;

12 at.% burnup

(from Pahl, et al, 1990)

Metallic Fuel Behavior—Steady-state FCCI

! Fuel-Cladding Inter-diffusion

– RE fission products (La, Ce, Pr, Nd)

and some Pu reacts with SS cladding

– Interaction product brittle

– Considered as cladding wastage
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MOX Fuel Design (FFTF)

a)                                                                                         b)

FFTF He-bonded MOX Fuel:  a) Driver Fuel and b) Core Demonstration Experiment Fuel 

(from Bridges et al, 1993)
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Important MOX Fuel Performance Phenomena

! Fuel swelling and FCMI

! Fuel restructuring

! Gas release

! FCCI

! Fuel-coolant compatibility



15

MOX Fuel Behavior—Fuel Swelling and FCMI

Diameter and cesium fission product accumulation in high-temperature MOX pins,

HT9-clad (a) and D9-clad (b). Cs interacted with MOX fuel causing FCMI.
(from Bridges, et al ,1993)

(a)                                                                    (b)
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MOX Fuel Behavior—Restructuring

MOX fuel ceramography of FFTF driver fuel produced by Kerr-McGee and Babcock and Wilcox,

showing restructuring as a function of burnup.  (from Hales, et al, 1986)

50,   100 MWd/kgM
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MOX Fuel Behavior—Gas Release

(from Lambert, et al, 1994)

! MOX fuel operated at high temperature and undergoing

restructuring exhibits high gas release.
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MOX Fuel Behavior—FCCI

Melting T vs O/M

(from Morimoto, et al, 2005)

! Hypostoichiometric MOX for SFRs

– As-fabricated O/M < 2.00 to suppress

free oxygen at high burnup, mitigate

FCCI

– O/M ratio affects fabrication

– O/M ratio affects properties

Sample 1 – MOX + MAs

Sample 2 – MOX+MAs+REs

Sample 3 – MOX+MAs+REs+NMs

(from Morimoto, et al, 2005)
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MOX Fuel Behavior—Fuel-coolant Compatibility

Typical breach extension in 

induced midlife failure,

EBR-II K2B test.

(from Lambert, et al, 1990)

! Run-beyond-cladding-breach

(RBCB) of MOX accompanied by

fuel/Na reaction and initial crack

extension

! Fuel loss can be related to degree

of interaction.

! Reactant layer becomes coherent

and inhibits further reaction with

coolant.
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Stainless-Steel Cladding & Duct Performance

! Performance Issues

– Cladding dilation

– Duct dilation, bowing, or twisting

! Irradiation Behavior

– Void swelling (AS)

– Irradiation creep (AS & FMS)

– Irradiation embrittlement (AS & FMS)

! Alloys to Address Issues

– Advanced austenitic stainless steels

– Ferritic & tempered-martensitic stainless steels

– Oxide-dispersion strengthened steel alloys
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Base Fuel Technology:  US Experience
Crawford, Porter, Hayes, Journal of Nuclear Materials, 371:  202-231 (2007).

10 TREAT tests (10 rods; Na or

He bond); ! 3-6 times TOP

margins to breach

Loss-of-Na bond test; RBCB for

100 EFPD; Centerline melting test

18 EBR-II tests with 472 rods in

316SS cladding; 10 rods up to 20

at.% w/o breach

5 of which experienced 15% TOP

at 12 at.%

219 rods in FFTF, incl 91 in D9, 91

with pellet & sphere-pac fuel

None applicable

None applicable

Mixed Carbide

18 RBCB tests; 30

breached rods

4 slow ramp tests

9 TREAT tests MOX in

316SS (14 rods) & HT9 (5

rods)

6 RBCB tests U-Fs & U-

Pu-Zr/U-Zr(5)

6 TREAT tests U-Fs in

316SS (9rods) & U-Zr/U-

Pu-Zr in D9/HT9 (6 rods)

Safety &

Operability

4300 MOX rods in 316SS to

10 at.%; fab var’s; CL melt

3000 MOX rods in EBR-II;

peak at 17.5at.% bu

2377 MOX rods in D9 to 10-

12 at.% bu; some at 19

at.% bu

600 U-Pu-Zr rods; D9 &

HT9 to > 10 - 19 at.% in

EBR-II & FFTF

Burnup

Capability &

Experiments

MOX in HT9 to 15-20 at.%

bu (CDE)

MOX in 316SS to 10 at.%

bu

U-Zr in 316SS, D9, HT9 "

10at.% bu in EBR-II &

FFTF

Through

Qualification

>48,000 MOX rods in

316SS (Series I&II) 8 at.%

bu

" 120,000 U-Fs rods in

304LSS/316SS 1-8 at.% bu

~13,000 U-Zr rods in

316SS 10 at.% bu

Driver Fuel

Operation

Mixed OxideMetallic
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Transient Fuel Phenomena

! Metallic Fuels

– Pre-failure Behavior

"Substantial axial expansion

"Cladding strain due to gas pressure

"Possible fuel-cladding liquefaction

– Failure Behavior

"Failure generally near top of fuel

column

"Stress rupture due to gas pressure

in cladding thinned by eutectic-like

penetration and weakened at high

temperature

– Post-failure Behavior

"Possible fuel injection into coolant

"Low stored energy, no reaction with

coolant, some local sodium voiding

! Oxide Fuels

– Pre-failure Behavior

"Axial relocation (apparently, upward

axial motion)

"Cladding strain due to FCMI and

gas pressure

– Failure Behavior

"Failure generally in upper 1/3 of fuel

column

"Cladding melt-through with gas

pressure and FCMI, cladding

weakened at high temperature

– Post-failure Behavior

"Fuel dispersal into coolant

"Relatively high stored energy,

reaction with coolant, local sodium

voiding
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1 - Unaffected cladding

2 - Fuel/cladding solid-state interaction

3 - Fuel/cladding liquid phase

Transient Phenomena—Metallic Fuels

Fuel/Cladding ‘Eutectic’ Formation

U-10Zr / HT9 at 800°C, 1 hr
(from H. Tsai, et al, 1990) 3
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Metallic and MOX Fuels—Summary

! Metallic Fuels  (U-Zr or U-Pu-Zr)

– Acceptable performance and reliability demonstrated up to 10 at.% burnup, with
capability demonstrated to 20 at.% burnup

– Robust overpower capability demonstrated in TREAT tests: ~ 4 to 5x’s nominal
power; failures near top of fuel column; pre-failure axial expansion

– Performance issues typically creep rupture at high burnup, accelerated due to
FCCI.

– Performance phenomena with U-Fs, U-Zr & U-Pu-Zr are the same.  Burnup,
temperature and cladding performance are key variables

! MOX Fuels

– Acceptable performance and reliability demonstrated up to 10 at.% burnup, with
capability demonstrated to 20 at.% burnup

– Robust overpower capability demonstrated in TREAT tests: ~ 3 to 4x’s nominal
power; well above primary and secondary FFTF trips; failures near core mid-
plane; pre-failure axial fuel motion

– Performance issues typically creep rupture at high burnup, accelerated due to
FCMI (and FCCI if O/M not controlled).

! Metallic and MOX fuel performance in SFRs are both well known, with
good experience in the US (MOX fuel in France, Japan)
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Experience with Fuels Containing

Minor Actinides
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SFR Transmutation Fuels with Minor Actinides

(MAs) and Rare Earth (RE) Fission Products

! Unique Features of SFR Transmutation Fuels

– Pu content, which depending on CR selected my

be higher than historic database (with

corresponding decrease in U content)

– Minor actinides (Am, Np, Cm) present in significant

quantities

– Rare earth fission product (La, Ce, Pr, Nd) carry-

over from recycle step may be non-trivial

! Gives Rise to Challenges and Unknowns

– Need for remote fuel fabrication

– Likely need for new fabrication methods (e.g., due

to Am volatility; waste minimization, etc.)

– Effects on fuel performance must be determined
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Metallic Fuel with MA—X501 Fabrication

! U-20.2Pu-9.1Zr-1.2Am-1.2Np

! Injection cast at 1450°C

! Inhomogeneous microstructure

! Am and Np segregate to phases with variable
composition

21-47 U

14-49 Pu

9-19 Zr

0-25 Am

0-18 Np

Impurities

6 U

3 Pu

6 Np

86 Zr

Lower section; slower cooling
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HT9 Cladding

Metallic Fuel with MA—X501 Irradiation

! LHGR = 450 W/cm

! PICT = 540°C

! Burnup = 7.6%

! 241Am transmutation = 9.1%

! Gas Release

– Fission gas = 79%

– Helium = 90%
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AFCI Fuels Testing in the ATR East Flux Trap

! 4 Capsule Positions in EFT

– Cd shrouds in 1,2,3,4

– 6 rodlets per capsule

– 24 rodlets irradiated

simultaneously

! Capsule Limits

– LHGR ! 500 W/cm

– PICT ! 650°C

– Capsule pressure ! 975 psi

East Flux

Trap

4

2

 5

1

3

6
7
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AFC-2A,B Currently Under Irradiation in the ATR

! AFC-2A,B Test Matrix

! AFC-2A,B Test Objectives

– LHGR = 350 W/cm; PICT = 550°C

– Burnups of 10 at.% (2A) and 25 at.% (2B)

– Group recovery of 30 year-cooled PWR TRU

– Effect of RE fission product carry-over on FCCI

Rodlet AFC-2A&B

1 U-20Pu-3Am-2Np-15Zr

2 U-20Pu-3Am-2Np-1.0RE-15Zr

3 U-20Pu-3Am-2Np-1.5RE-15Zr

4 U-30Pu-5Am-3Np-1.5RE-20Zr

5 U-30Pu-5Am-3Np-1.0RE-20Zr

6 U-30Pu-5Am-3Np-20Zr

RE=6% La, 16% Pr, 25% Ce, 53% Nd
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AFC-2C,D Currently Under Irradiation in the ATR

! AFC-2C,D Test Matrix

Rodlet AFC-2C&D

1 (U0.75,Pu0.20,Am0.03,Np0.02)O1.95

2 (U0.80,Pu0.20)O1.98

3 (U0.75,Pu0.20,Am0.03,Np0.02)O1.98

4 (U0.75,Pu0.20,Am0.03,Np0.02)O1.95

5 (U0.80,Pu0.20)O1.98

6 (U0.75,Pu0.20,Am0.03,Np0.02)O1.98

! Test Conditions

– LHGR = 350 W/cm

– PICT = 550°C

– Group recovery of 30 year-cooled

PWR TRU

! Test Objectives

– Study effect of O/M on FCCI

– Include MOX as control

– High CR (20% Pu) for initial oxide

test

– Discharge criteria

2C: ! 10 at.% burnup

2D: ! 25 at.% burnup
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Comparison of Spectra (ATR vs. LMFBR)

! ATR Neutron Energy Spectrum

– Highly thermal spectrum in EFT with no

neutron filter

– Unaltered spectrum will result in

significant self-shielding in dense,

highly-enriched fuels

! Cd-shroud Integral with Experiment

Basket

– Efficient removal of neutrons with

energies below cadmium cut-off

! Resulting Spectrum

– Filtered spectrum in experiment does

not have prototypic fast neutron

component

– Epi-thermal component responsible for

most fissions; much more penetrating

than thermal neutrons

– Test fuels are free of gross self-

shielding
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Radial Flux Depression and Temperature

Profiles in Test Fuels

! How prototypic are AFC rodlets
irradiated in the ATR?

– Assessed by analysis

– Radial power profiles calculated w/MCNP

– Depletion in fuel and Cd shroud
calculated w/ORIGEN (MCWO)

– 1-D thermal analysis using radial powers

! Resulting temperatures for AFC-2C,D
oxide rodlets

– 3 cases:  SFR, unshrouded ATR, ATR
w/Cd shroud

– w/Cd shroud, peak-to-avg power at fuel
periphery is 1.22; fuel central temperature
58°C less than SFR (~400°C less for
unshrouded case)
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Summary

! SFR Fuels Experience in the US

– Fuel Types

– Fuel Performance Issues

– Experience/Testing

! Experience with Fuels Containing Minor Actinides


